/* * @(#)hprof_table.c 1.38 10/03/23 * * Copyright (c) 2006, Oracle and/or its affiliates. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * -Redistribution of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * -Redistribution in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of Oracle or the names of contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * This software is provided "AS IS," without a warranty of any kind. ALL * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING * ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE * OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN MICROSYSTEMS, INC. ("SUN") * AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE * AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS * DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST * REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, * INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY * OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE, * EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. * * You acknowledge that this software is not designed, licensed or intended * for use in the design, construction, operation or maintenance of any * nuclear facility. */ /* Lookup Table of generic elements. */ /* * Each table has a unique lock, all accesses are protected. * * Table elements are identified with a 32bit unsigned int. * (Also see HARE trick below, which makes the TableIndex unique per table). * * Each element has a key (N bytes) and possible additional info. * * Two elements with the same key should be the same element. * * The storage for the Key and Info cannot move, the table itself can. * * The hash table will only be allocated if we have keys, and will resize * when the table needs to resize. The hash buckets just provide the * reference to the first TableIndex in the hash bucket, the next * field of the TableElement takes you to the next item in the hash * bucket. Lookups will drift the looked up item to the head of the * list. * * The full 32bit hashcode and key length is saved for comparisons, the * last thing done is the actual comparison of the Key contents with * keys_equal(). * * Freed elements (not many tables actually free items) are managed with * a bit vector and a low index where a freed element might be found. * Bytes are inspected until a non-zero byte indicates a freed bit is * set. A count of freed elements is also kept. * */ #include "hprof.h" /* Macros for bit vectors: unsigned char 2^3==8 OR unsigned int 2^5==32 */ #define BV_CHUNK_POWER_2 3 /* 2 to this power == BV_CHUNK_BITSIZE */ #define BV_CHUNK_TYPE unsigned char #define BV_CHUNK_BITSIZE (((int)sizeof(BV_CHUNK_TYPE))<<3) /* x8 */ #define BV_CHUNK_INDEX_MASK ( (1 << BV_CHUNK_POWER_2) - 1 ) #define BV_ELEMENT_COUNT(nelems) ((((nelems+1)) >> BV_CHUNK_POWER_2) + 1) #define BV_CHUNK_ROUND(i) ((i) & ~(BV_CHUNK_INDEX_MASK)) #define BV_CHUNK(ptr, i) \ (((BV_CHUNK_TYPE*)(ptr))[(i) >> BV_CHUNK_POWER_2]) #define BV_CHUNK_MASK(i) \ (1 << ((i) & BV_CHUNK_INDEX_MASK)) /* Hash code value */ typedef unsigned HashCode; /* Basic key for an element. What makes the element unique. */ typedef struct TableKey { void *ptr; /* Pointer to arbitrary data that forms the key. */ int len; /* Length in bytes of this key. */ } TableKey; /* Basic TableElement (but only allocated if keys are used) */ typedef struct TableElement { TableKey key; /* The element key. */ HashCode hcode; /* The full 32bit hashcode for the key. */ TableIndex next; /* The next TableElement in the hash bucket chain. */ void *info; /* Info pointer */ } TableElement; /* Generic Lookup Table structure */ typedef struct LookupTable { char name[48]; /* Name of table. */ void *table; /* Pointer to array of elements. */ TableIndex *hash_buckets; /* Pointer to hash bucket chains. */ Blocks *info_blocks; /* Blocks space for info */ Blocks *key_blocks; /* Blocks space for keys */ TableIndex next_index; /* Next element available. */ TableIndex table_size; /* Current size of table. */ TableIndex table_incr; /* Suggested increment size. */ TableIndex hash_bucket_count; /* Number of hash buckets. */ int elem_size; /* Size of element. */ int info_size; /* Size of info structure. */ void *freed_bv; /* Freed element bit vector */ int freed_count; /* Count of freed'd elements */ TableIndex freed_start; /* First freed in table */ int resizes; /* Count of table resizes done. */ unsigned bucket_walks; /* Count of bucket walks. */ jrawMonitorID lock; /* Lock for table access. */ SerialNumber serial_num; /* Table serial number. */ TableIndex hare; /* Rabbit (HARE) trick. */ } LookupTable; /* To get a pointer to an element, regardless of element size. */ #define ELEMENT_PTR(ltable, i) \ ((void*)(((char*)(ltable)->table) + (ltable)->elem_size * (i))) /* Sanity, check all the time. */ #define SANITY_CHECK(condition) ( (condition) ? (void)0 : \ HPROF_ERROR(JNI_FALSE, "SANITY IN QUESTION: " #condition)) /* To see if an index is valid. */ #define SANITY_CHECK_INDEX(ltable,i) SANITY_CHECK((i) < ltable->next_index) /* Small rabbits (hares) can be hidden in the index value returned. * Only the right rabbits are allowed in certain pens (LookupTables). * When herding rabbits it's important to keep them separate, * there are lots of rabbits, all different kinds and sizes, * keeping them all separate is important to avoid cross breeding. */ #define _SANITY_USE_HARE #ifdef _SANITY_USE_HARE #define SANITY_ADD_HARE(i,hare) (SANITY_REMOVE_HARE(i) | (hare)) #define SANITY_REMOVE_HARE(i) ((i) & 0x0FFFFFFF) #define SANITY_CHECK_HARE(i,hare) SANITY_CHECK(SANITY_ADD_HARE(i,hare)==(i)) #else #define SANITY_ADD_HARE(i,hare) (i) #define SANITY_REMOVE_HARE(i) (i) #define SANITY_CHECK_HARE(i,hare) #endif static jrawMonitorID lock_create(char *name) { jrawMonitorID stanley; stanley = createRawMonitor(name); return stanley; } static void lock_destroy(jrawMonitorID stanley) { if ( stanley != NULL ) { destroyRawMonitor(stanley); } } static void lock_enter(jrawMonitorID stanley) { if ( stanley != NULL ) { rawMonitorEnter(stanley); } } static void lock_exit(jrawMonitorID stanley) { if ( stanley != NULL ) { rawMonitorExit(stanley); } } static void get_key(LookupTable *ltable, TableIndex index, void **pkey_ptr, int *pkey_len) { *pkey_ptr = ((TableElement*)ELEMENT_PTR(ltable,index))->key.ptr; *pkey_len = ((TableElement*)ELEMENT_PTR(ltable,index))->key.len; } static void * get_info(LookupTable *ltable, TableIndex index) { TableElement *element; if ( ltable->info_size == 0 ) { return NULL; } element = (TableElement*)ELEMENT_PTR(ltable,index); return element->info; } static void hash_out(LookupTable *ltable, TableIndex index) { if ( ltable->hash_bucket_count > 0 ) { TableElement *element; TableElement *prev_e; TableIndex bucket; TableIndex i; element = (TableElement*)ELEMENT_PTR(ltable,index); bucket = (element->hcode % ltable->hash_bucket_count); i = ltable->hash_buckets[bucket]; HPROF_ASSERT(i!=0); prev_e = NULL; while ( i != 0 && i != index ) { prev_e = (TableElement*)ELEMENT_PTR(ltable,i); i = prev_e->next; } HPROF_ASSERT(i==index); if ( prev_e == NULL ) { ltable->hash_buckets[bucket] = element->next; } else { prev_e->next = element->next; } element->next = 0; element->hcode = 0; } } static jboolean is_freed_entry(LookupTable *ltable, TableIndex index) { if ( ltable->freed_bv == NULL ) { return JNI_FALSE; } if ( ( BV_CHUNK(ltable->freed_bv, index) & BV_CHUNK_MASK(index) ) != 0 ) { return JNI_TRUE; } return JNI_FALSE; } static void set_freed_bit(LookupTable *ltable, TableIndex index) { void *p; HPROF_ASSERT(!is_freed_entry(ltable, index)); p = ltable->freed_bv; if ( p == NULL ) { int size; /* First time for a free */ HPROF_ASSERT(ltable->freed_start==0); HPROF_ASSERT(ltable->freed_start==0); size = BV_ELEMENT_COUNT(ltable->table_size); p = HPROF_MALLOC(size*(int)sizeof(BV_CHUNK_TYPE)); ltable->freed_bv = p; (void)memset(p, 0, size*(int)sizeof(BV_CHUNK_TYPE)); } BV_CHUNK(p, index) |= BV_CHUNK_MASK(index); ltable->freed_count++; if ( ltable->freed_count == 1 ) { /* Set freed_start for first time. */ HPROF_ASSERT(ltable->freed_start==0); ltable->freed_start = index; } else if ( index < ltable->freed_start ) { /* Set freed_start to smaller value so we can be smart about search */ HPROF_ASSERT(ltable->freed_start!=0); ltable->freed_start = index; } HPROF_ASSERT(ltable->freed_start!=0); HPROF_ASSERT(ltable->freed_start < ltable->next_index); HPROF_ASSERT(is_freed_entry(ltable, index)); } static TableIndex find_freed_entry(LookupTable *ltable) { if ( ltable->freed_count > 0 ) { TableIndex i; TableIndex istart; void *p; BV_CHUNK_TYPE chunk; HPROF_ASSERT(BV_CHUNK_BITSIZE==(1<freed_bv; HPROF_ASSERT(p!=NULL); /* Go to beginning of chunk */ HPROF_ASSERT(ltable->freed_start!=0); HPROF_ASSERT(ltable->freed_start < ltable->next_index); istart = BV_CHUNK_ROUND(ltable->freed_start); /* Find chunk with any bit set */ chunk = 0; for( ; istart < ltable->next_index ; istart += BV_CHUNK_BITSIZE ) { chunk = BV_CHUNK(p, istart); if ( chunk != 0 ) { break; } } HPROF_ASSERT(chunk!=0); HPROF_ASSERT(chunk==BV_CHUNK(p,istart)); HPROF_ASSERT(istart < ltable->next_index); /* Find bit in chunk and return index of freed item */ for( i = istart ; i < (istart+BV_CHUNK_BITSIZE) ; i++) { BV_CHUNK_TYPE mask; mask = BV_CHUNK_MASK(i); if ( (chunk & mask) != 0 ) { HPROF_ASSERT(chunk==BV_CHUNK(p,i)); chunk &= ~mask; BV_CHUNK(p, i) = chunk; ltable->freed_count--; HPROF_ASSERT(i < ltable->next_index); if ( ltable->freed_count > 0 ) { /* Set freed_start so we can be smart about search */ HPROF_ASSERT((i+1) < ltable->next_index); ltable->freed_start = i+1; } else { /* Clear freed_start because there are no freed entries */ ltable->freed_start = 0; } HPROF_ASSERT(!is_freed_entry(ltable, i)); return i; } } HPROF_ASSERT(0); } return 0; } static void free_entry(LookupTable *ltable, TableIndex index) { set_freed_bit(ltable, index); hash_out(ltable, index); } /* Fairly generic hash code generator (not a hash table index) */ static HashCode hashcode(void *key_ptr, int key_len) { unsigned char * p; HashCode hcode; int i; hcode = 0; if ( key_ptr == NULL || key_len == 0 ) { return hcode; } i = 0; p = (unsigned char*)key_ptr; for ( ; i < key_len-3 ; i += 4 ) { /* Do a little loop unrolling */ hcode += ( ( (unsigned)(p[i]) << 24 ) | ( (unsigned)(p[i+1]) << 16 ) | ( (unsigned)(p[i+2]) << 8 ) | ( (unsigned)(p[i+3]) ) ); } for ( ; i < key_len ; i++ ) { hcode += (unsigned)(p[i]); } return hcode; } static void hash_in(LookupTable *ltable, TableIndex index, HashCode hcode) { if ( ltable->hash_bucket_count > 0 ) { TableElement *element; TableIndex bucket; bucket = (hcode % ltable->hash_bucket_count); element = (TableElement*)ELEMENT_PTR(ltable, index); element->hcode = hcode; element->next = ltable->hash_buckets[bucket]; ltable->hash_buckets[bucket] = index; } } static void resize_hash_buckets(LookupTable *ltable) { /* Don't want to do this too often. */ /* Hash table needs resizing when it's smaller than 1/16 the number of * elements used in the table. This is just a guess. */ if ( ( ltable->hash_bucket_count < (ltable->next_index >> 4) ) && ( ltable->hash_bucket_count > 0 ) && ( ( ltable->resizes % 10 ) == 0 ) && ( ltable->bucket_walks > 1000*ltable->hash_bucket_count ) ) { int old_size; int new_size; TableIndex *new_buckets; TableIndex *old_buckets; int bucket; /* Increase size of hash_buckets array, and rehash all elements */ LOG3("Table resize", ltable->name, ltable->resizes); old_size = ltable->hash_bucket_count; old_buckets = ltable->hash_buckets; new_size = (ltable->next_index >> 3); /* 1/8 current used count */ SANITY_CHECK(new_size > old_size); new_buckets = HPROF_MALLOC(new_size*(int)sizeof(TableIndex)); (void)memset(new_buckets, 0, new_size*(int)sizeof(TableIndex)); ltable->hash_bucket_count = new_size; ltable->hash_buckets = new_buckets; for ( bucket = 0 ; bucket < old_size ; bucket++ ) { TableIndex index; index = old_buckets[bucket]; while ( index != 0 ) { TableElement *element; TableIndex next; element = (TableElement*)ELEMENT_PTR(ltable, index); next = element->next; element->next = 0; hash_in(ltable, index, element->hcode); index = next; } } HPROF_FREE(old_buckets); ltable->bucket_walks = 0; } } static void resize(LookupTable *ltable) { int old_size; int new_size; void *old_table; void *new_table; int nbytes; int obytes; LOG3("Table resize", ltable->name, ltable->resizes); /* Adjust increment on every resize * Minimum is 1/4 the size of the current table or 512. */ old_size = ltable->table_size; if ( ltable->table_incr < (unsigned)(old_size >> 2) ) { ltable->table_incr = (old_size >> 2); } if ( ltable->table_incr < 512 ) { ltable->table_incr = 512; } new_size = old_size + ltable->table_incr; /* Basic table element array */ obytes = old_size * ltable->elem_size; nbytes = new_size * ltable->elem_size; old_table = ltable->table; new_table = HPROF_MALLOC(nbytes); (void)memcpy(new_table, old_table, obytes); (void)memset(((char*)new_table)+obytes, 0, nbytes-obytes); ltable->table = new_table; ltable->table_size = new_size; HPROF_FREE(old_table); /* Then bit vector for freed entries */ if ( ltable->freed_bv != NULL ) { void *old_bv; void *new_bv; obytes = BV_ELEMENT_COUNT(old_size)*(int)sizeof(BV_CHUNK_TYPE); nbytes = BV_ELEMENT_COUNT(new_size)*(int)sizeof(BV_CHUNK_TYPE); old_bv = ltable->freed_bv; new_bv = HPROF_MALLOC(nbytes); (void)memcpy(new_bv, old_bv, obytes); (void)memset(((char*)new_bv)+obytes, 0, nbytes-obytes); ltable->freed_bv = new_bv; HPROF_FREE(old_bv); } /* Check to see if the hash table needs resizing */ resize_hash_buckets(ltable); ltable->resizes++; } static jboolean keys_equal(void *key_ptr1, void *key_ptr2, int key_len) { unsigned char * p1; unsigned char * p2; int i; if ( key_len == 0 ) { return JNI_TRUE; } /* We know these are aligned because we malloc'd them. */ /* Compare word by word, then byte by byte */ p1 = (unsigned char*)key_ptr1; p2 = (unsigned char*)key_ptr2; for ( i = 0 ; i < key_len-3 ; i += 4 ) { /*LINTED*/ if ( *(unsigned*)(p1+i) != *(unsigned*)(p2+i) ) { return JNI_FALSE; } } for ( ; i < key_len ; i++ ) { if ( p1[i] != p2[i] ) { return JNI_FALSE; } } return JNI_TRUE; } static TableIndex find_entry(LookupTable *ltable, void *key_ptr, int key_len, HashCode hcode) { TableIndex index; HPROF_ASSERT(ltable!=NULL); index = 0; if ( ltable->hash_bucket_count > 0 ) { TableIndex bucket; TableIndex prev_index; HPROF_ASSERT(key_ptr!=NULL); HPROF_ASSERT(key_len>0); prev_index = 0; bucket = (hcode % ltable->hash_bucket_count); index = ltable->hash_buckets[bucket]; while ( index != 0 ) { TableElement *element; TableElement *prev_element; element = (TableElement*)ELEMENT_PTR(ltable, index); if ( hcode == element->hcode && key_len == element->key.len && keys_equal(key_ptr, element->key.ptr, key_len) ) { /* Place this guy at the head of the bucket list */ if ( prev_index != 0 ) { prev_element = (TableElement*)ELEMENT_PTR(ltable, prev_index); prev_element->next = element->next; element->next = ltable->hash_buckets[bucket]; ltable->hash_buckets[bucket] = index; } break; } prev_index = index; index = element->next; ltable->bucket_walks++; } } return index; } static TableIndex setup_new_entry(LookupTable *ltable, void *key_ptr, int key_len, void *info_ptr) { TableIndex index; TableElement *element; void *info; void *dup_key; /* Assume we need new allocations for key and info */ dup_key = NULL; info = NULL; /* Look for a freed element */ index = 0; if ( ltable->freed_count > 0 ) { index = find_freed_entry(ltable); } if ( index != 0 ) { int old_key_len; /* Found a freed element, re-use what we can but clean it up. */ element = (TableElement*)ELEMENT_PTR(ltable, index); dup_key = element->key.ptr; old_key_len = element->key.len; info = element->info; (void)memset(element, 0, ltable->elem_size); /* Toss the key space if size is too small to hold new key */ if ( key_ptr != NULL ) { if ( old_key_len < key_len ) { /* This could leak space in the Blocks if keys are variable * in size AND the table does frees of elements. */ dup_key = NULL; } } } else { /* Brand new table element */ if ( ltable->next_index >= ltable->table_size ) { resize(ltable); } index = ltable->next_index++; element = (TableElement*)ELEMENT_PTR(ltable, index); } /* Setup info area */ if ( ltable->info_size > 0 ) { if ( info == NULL ) { info = blocks_alloc(ltable->info_blocks, ltable->info_size); } if ( info_ptr==NULL ) { (void)memset(info, 0, ltable->info_size); } else { (void)memcpy(info, info_ptr, ltable->info_size); } } /* Setup key area if one was provided */ if ( key_ptr != NULL ) { if ( dup_key == NULL ) { dup_key = blocks_alloc(ltable->key_blocks, key_len); } (void)memcpy(dup_key, key_ptr, key_len); } /* Fill in element */ element->key.ptr = dup_key; element->key.len = key_len; element->info = info; return index; } LookupTable * table_initialize(const char *name, int size, int incr, int bucket_count, int info_size) { LookupTable * ltable; char lock_name[80]; int elem_size; int key_size; HPROF_ASSERT(name!=NULL); HPROF_ASSERT(size>0); HPROF_ASSERT(incr>0); HPROF_ASSERT(bucket_count>=0); HPROF_ASSERT(info_size>=0); key_size = 1; ltable = (LookupTable *)HPROF_MALLOC((int)sizeof(LookupTable)); (void)memset(ltable, 0, (int)sizeof(LookupTable)); (void)strncpy(ltable->name, name, sizeof(ltable->name)); elem_size = (int)sizeof(TableElement); ltable->next_index = 1; /* Never use index 0 */ ltable->table_size = size; ltable->table_incr = incr; ltable->hash_bucket_count = bucket_count; ltable->elem_size = elem_size; ltable->info_size = info_size; if ( info_size > 0 ) { ltable->info_blocks = blocks_init(8, info_size, incr); } if ( key_size > 0 ) { ltable->key_blocks = blocks_init(8, key_size, incr); } ltable->table = HPROF_MALLOC(size * elem_size); (void)memset(ltable->table, 0, size * elem_size); if ( bucket_count > 0 ) { int nbytes; nbytes = (int)(bucket_count*sizeof(TableIndex)); ltable->hash_buckets = (TableIndex*)HPROF_MALLOC(nbytes); (void)memset(ltable->hash_buckets, 0, nbytes); } (void)md_snprintf(lock_name, sizeof(lock_name), "HPROF %s table lock", name); lock_name[sizeof(lock_name)-1] = 0; ltable->lock = lock_create(lock_name); ltable->serial_num = gdata->table_serial_number_counter++; ltable->hare = (ltable->serial_num << 28); LOG3("Table initialized", ltable->name, ltable->table_size); return ltable; } int table_element_count(LookupTable *ltable) { int nelems; HPROF_ASSERT(ltable!=NULL); lock_enter(ltable->lock); { nelems = ltable->next_index-1; } lock_exit(ltable->lock); return nelems; } void table_free_entry(LookupTable *ltable, TableIndex index) { HPROF_ASSERT(ltable!=NULL); SANITY_CHECK_HARE(index, ltable->hare); index = SANITY_REMOVE_HARE(index); SANITY_CHECK_INDEX(ltable, index); lock_enter(ltable->lock); { HPROF_ASSERT(!is_freed_entry(ltable, index)); free_entry(ltable, index); } lock_exit(ltable->lock); } void table_walk_items(LookupTable *ltable, LookupTableIterator func, void* arg) { if ( ltable == NULL || ltable->next_index <= 1 ) { return; } HPROF_ASSERT(func!=NULL); lock_enter(ltable->lock); { TableIndex index; int fcount; LOG3("table_walk_items() count+free", ltable->name, ltable->next_index); fcount = 0; for ( index = 1 ; index < ltable->next_index ; index++ ) { if ( ! is_freed_entry(ltable, index) ) { void *key_ptr; int key_len; void *info; get_key(ltable, index, &key_ptr, &key_len); info = get_info(ltable, index); (*func)(SANITY_ADD_HARE(index, ltable->hare), key_ptr, key_len, info, arg); if ( is_freed_entry(ltable, index) ) { fcount++; } } else { fcount++; } } LOG3("table_walk_items() count-free", ltable->name, ltable->next_index); HPROF_ASSERT(fcount==ltable->freed_count); } lock_exit(ltable->lock); } void table_cleanup(LookupTable *ltable, LookupTableIterator func, void *arg) { if ( ltable == NULL ) { return; } if ( func != NULL ) { table_walk_items(ltable, func, arg); } lock_enter(ltable->lock); { HPROF_FREE(ltable->table); if ( ltable->hash_buckets != NULL ) { HPROF_FREE(ltable->hash_buckets); } if ( ltable->freed_bv != NULL ) { HPROF_FREE(ltable->freed_bv); } if ( ltable->info_blocks != NULL ) { blocks_term(ltable->info_blocks); ltable->info_blocks = NULL; } if ( ltable->key_blocks != NULL ) { blocks_term(ltable->key_blocks); ltable->key_blocks = NULL; } } lock_exit(ltable->lock); lock_destroy(ltable->lock); ltable->lock = NULL; HPROF_FREE(ltable); ltable = NULL; } TableIndex table_create_entry(LookupTable *ltable, void *key_ptr, int key_len, void *info_ptr) { TableIndex index; HashCode hcode; HPROF_ASSERT(ltable!=NULL); /* Create hash code if needed */ hcode = 0; if ( ltable->hash_bucket_count > 0 ) { hcode = hashcode(key_ptr, key_len); } /* Create a new entry */ lock_enter(ltable->lock); { /* Need to create a new entry */ index = setup_new_entry(ltable, key_ptr, key_len, info_ptr); /* Add to hash table if we have one */ if ( ltable->hash_bucket_count > 0 ) { hash_in(ltable, index, hcode); } } lock_exit(ltable->lock); return SANITY_ADD_HARE(index, ltable->hare); } TableIndex table_find_entry(LookupTable *ltable, void *key_ptr, int key_len) { TableIndex index; HashCode hcode; /* Create hash code if needed */ hcode = 0; if ( ltable->hash_bucket_count > 0 ) { hcode = hashcode(key_ptr, key_len); } /* Look for element */ lock_enter(ltable->lock); { index = find_entry(ltable, key_ptr, key_len, hcode); } lock_exit(ltable->lock); return index==0 ? index : SANITY_ADD_HARE(index, ltable->hare); } TableIndex table_find_or_create_entry(LookupTable *ltable, void *key_ptr, int key_len, jboolean *pnew_entry, void *info_ptr) { TableIndex index; HashCode hcode; /* Assume it is NOT a new entry for now */ if ( pnew_entry ) { *pnew_entry = JNI_FALSE; } /* Create hash code if needed */ hcode = 0; if ( ltable->hash_bucket_count > 0 ) { hcode = hashcode(key_ptr, key_len); } /* Look for element */ index = 0; lock_enter(ltable->lock); { if ( ltable->hash_bucket_count > 0 ) { index = find_entry(ltable, key_ptr, key_len, hcode); } if ( index == 0 ) { /* Need to create a new entry */ index = setup_new_entry(ltable, key_ptr, key_len, info_ptr); /* Add to hash table if we have one */ if ( ltable->hash_bucket_count > 0 ) { hash_in(ltable, index, hcode); } if ( pnew_entry ) { *pnew_entry = JNI_TRUE; } } } lock_exit(ltable->lock); return SANITY_ADD_HARE(index, ltable->hare); } void * table_get_info(LookupTable *ltable, TableIndex index) { void *info; HPROF_ASSERT(ltable!=NULL); HPROF_ASSERT(ltable->info_size > 0); SANITY_CHECK_HARE(index, ltable->hare); index = SANITY_REMOVE_HARE(index); SANITY_CHECK_INDEX(ltable, index); lock_enter(ltable->lock); { HPROF_ASSERT(!is_freed_entry(ltable, index)); info = get_info(ltable,index); } lock_exit(ltable->lock); return info; } void table_get_key(LookupTable *ltable, TableIndex index, void **pkey_ptr, int *pkey_len) { HPROF_ASSERT(ltable!=NULL); HPROF_ASSERT(pkey_ptr!=NULL); HPROF_ASSERT(pkey_len!=NULL); SANITY_CHECK_HARE(index, ltable->hare); HPROF_ASSERT(ltable->elem_size!=0); index = SANITY_REMOVE_HARE(index); SANITY_CHECK_INDEX(ltable, index); lock_enter(ltable->lock); { HPROF_ASSERT(!is_freed_entry(ltable, index)); get_key(ltable, index, pkey_ptr, pkey_len); } lock_exit(ltable->lock); } void table_lock_enter(LookupTable *ltable) { lock_enter(ltable->lock); } void table_lock_exit(LookupTable *ltable) { lock_exit(ltable->lock); }